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Outline	  
•  Introduc=on	  to	  ChIP-‐seq	  experiment:	  biological	  mo=va=on	  

and	  experimental	  procedure.	  
•  Method	  and	  soKware	  for	  ChIP-‐seq	  peak	  calling:	  

–  Protein	  binding	  ChIP-‐seq.	  
–  Histone	  modifica=ons.	  	  

•  AKer	  peak	  calling:	  
–  Overlaps	  of	  peaks.	  	  
–  Differen=al	  analysis.	  	  



ChIP-‐seq:	  Chroma)n	  
ImmunoPrecipita)on	  +	  sequencing	  

•  Biological	  mo=va=on:	  detect	  or	  measure	  some	  
type	  of	  biological	  modifica=ons	  along	  the	  
genome:	  	  
– Detect	  binding	  sites	  of	  DNA-‐binding	  proteins	  
(transcrip=on	  factors,	  pol2,	  etc.)	  .	  

– Quan=fy	  strengths	  of	  chroma=n	  modifica=ons	  
(e.g.,	  histone	  modifica=ons).	  



Experimental	  procedures	  	  

•  Crosslink:	  fix	  proteins	  on	  isolate	  genomic	  DNA.	  
•  Sonica)on:	  cut	  DNA	  in	  small	  pieces	  of	  ~200bp.	  
•  IP:	  use	  an=body	  to	  capture	  DNA	  segments	  with	  
specific	  proteins.	  	  

•  Reverse	  crosslink:	  remove	  protein	  from	  DNA.	  
•  Sequence	  the	  DNA	  segments.	  



Genomic	  DNA	  with	  TF	  

By Richard Bourgon at UC Berkley 



TF/DNA	  Crosslinking	  in	  vivo	  

By Richard Bourgon at UC Berkley 



Sonica)on	  

By Richard Bourgon at UC Berkley 



TF-‐specific	  An)body	  

By Richard Bourgon at UC Berkley 



Immunoprecipita)on	  (IP)	  

By Richard Bourgon at UC Berkley 



Reverse	  Crosslink	  and	  DNA	  Purifica)on	  

By Richard Bourgon at UC Berkley 



Amplifica)on	  then	  sequencing	  

By Richard Bourgon at UC Berkley 



Data	  from	  ChIP-‐seq	  

•  Raw	  data:	  sequence	  reads.	  	  
•  AKer	  alignments:	  genome	  coordinates	  
(chromosome/posi=on)	  of	  all	  reads.	  	  

•  For	  downstream	  analysis,	  aligned	  reads	  are	  oKen	  
summarized	  into	  “counts”	  in	  equal	  sized	  bins	  
genome-‐wide:	  
1.  segment	  genome	  into	  small	  bins	  of	  equal	  sizes	  (50bps).	  
2.  Count	  number	  of	  reads	  started	  at	  each	  bin.	  	  



Methods	  and	  soPware	  for	  ChIP-‐
seq	  peak/block	  calling	  	  



ChIP-‐seq	  “peak”	  detec)on	  

•  When	  plot	  the	  read	  counts	  against	  genome	  coordinates,	  the	  
binding	  sites	  show	  a	  tall	  and	  pointy	  peak.	  So	  “peaks”	  are	  used	  
to	  refer	  to	  protein	  binding	  or	  histone	  modifica=on	  sites.	  	  

	  
	  
	  
	  
	  
	  

•  Peak	  detec=on	  is	  the	  most	  fundamental	  problem	  in	  ChIP-‐seq	  
data	  analysis.	  	  



Simple	  ideas	  for	  peak	  detec)on	  

•  Peaks	  are	  regions	  with	  reads	  clustered,	  so	  they	  can	  be	  
detected	  from	  binned	  read	  counts.	  	  

•  Counts	  from	  neighboring	  windows	  need	  to	  be	  combined	  to	  
make	  inference	  (so	  that	  it’s	  more	  robust).	  	  

•  To	  combine	  counts:	  
–  Smoothing	  based:	  moving	  average	  (MACS,	  CisGenome),	  HMM-‐based	  

(Hpeak).	  
–  Model	  clustering	  of	  reads	  star=ng	  posi=on	  (PICS,	  GPS).	  

•  Moreover,	  some	  special	  characteris=cs	  of	  the	  data	  can	  be	  
considered	  to	  improve	  the	  peak	  calling	  performance.	  	  



Control	  sample	  is	  important	  
•  A	  control	  sample	  is	  necessary	  for	  correc=ng	  many	  ar=facts:	  

–  DNA	  sequence	  contents	  affect	  amplifica=on	  or	  sequencing	  process.	  
–  Repe==ve	  regions	  affect	  alignments.	  	  
–  Chroma=n	  structures	  (e.g.,	  open	  chroma=n	  region	  or	  not)	  affect	  the	  

DNA	  sonica=on	  process.	  



Reads	  aligned	  to	  different	  strands	  

•  Number	  of	  Reads	  
aligned	  to	  different	  
strands	  form	  two	  
dis=nct	  peaks	  around	  
the	  true	  binding	  sites.	  

•  This	  informa=on	  can	  
be	  used	  to	  help	  peak	  
detec=on.	  	  

Mapping to two strands

UNC Biostatistics 784, spring 2011 3

Valouev	  et	  al.	  (2008)	  Nature	  Method	  



Mappability	  

•  For	  each	  basepair	  posi=on	  in	  the	  genome,	  whether	  a	  35	  bp	  
sequence	  tag	  star=ng	  from	  this	  posi=on	  can	  be	  uniquely	  mapped	  to	  
a	  genome	  loca=on.	  	  

•  Regions	  with	  low	  mappability	  (highly	  repe==ve)	  cannot	  have	  high	  
counts	  (because	  mul=-‐aligned	  reads	  are	  discarded),	  thus	  affect	  the	  
ability	  to	  detect	  peaks.	  	  

Mappability

It is defined as whether a 35 bp sequence tag can be uniquely mapped

to a genome location, and recorded corresponding to the 5’ start of

the sequence tag.

UNC Biostatistics 784, spring 2011 35



Normaliza)on	  issues	  

•  The	  most	  common	  normaliza=on	  needed	  is	  to	  adjust	  for	  total	  
counts.	  	  

•  Normalize	  by	  total	  counts	  is	  conserva=ve,	  because	  ChIP	  
sample	  contains	  reads	  mapped	  to	  background	  and	  peaks,	  but	  
control	  sample	  have	  reads	  mapped	  to	  background	  only.	  

•  It’s	  befer	  to	  normalize	  using	  the	  number	  of	  total	  reads	  in	  
backgrounds.	  Two	  pass	  algorithm:	  
–  Roughly	  find	  peaks,	  and	  exclude	  those	  regions.	  
–  Compute	  total	  reads	  in	  the	  leKover	  regions	  and	  normalize	  based	  on	  

that.	  	  

•  Other	  normaliza=ons	  (GC	  contents,	  MA	  plot	  based)	  available,	  
but	  don’t	  seems	  to	  help	  much.	  	  



Peak	  detec)on	  soPware	  

•  MACS	  
•  Cisgenome	  
•  QuEST	  
•  Hpeak	  
•  PICS	  
•  GPS	  
•  PeakSeq	  
•  MOSAiCS	  
•  …	  



MACS	  (Model-‐based	  Analysis	  of	  ChIP-‐Seq)	  
Zhang	  et	  al.	  2008,	  GB	  

•  Es=mate	  shiK	  size	  of	  reads	  d	  from	  the	  distance	  of	  two	  modes	  
from	  +	  and	  –	  strands.	  

•  ShiK	  all	  reads	  toward	  3’	  end	  by	  d/2.	  
•  Use	  a	  dynamic	  Possion	  model	  to	  scan	  genome	  and	  score	  

peaks.	  Counts	  in	  a	  window	  are	  assumed	  to	  following	  Poisson	  
distribu=on	  with	  rate:	  
–  The	  dynamic	  rate	  capture	  the	  local	  fluctua=on	  of	  counts.	  	  

•  FDR	  is	  es=mated	  from	  sample	  swapping:	  flip	  the	  IP	  and	  
control	  samples	  and	  call	  peaks.	  Number	  of	  peaks	  detected	  
under	  each	  p-‐value	  cutoff	  will	  be	  used	  as	  null	  and	  used	  to	  
compute	  FDR.	  	  

http://genomebiology.com/2008/9/9/R137 Genome Biology 2008,     Volume 9, Issue 9, Article R137       Zhang et al. R137.2

Genome Biology 2008, 9:R137

unknown to the user. Second, ChIP-Seq data exhibit regional
biases along the genome due to sequencing and mapping
biases, chromatin structure and genome copy number varia-
tions [10]. These biases could be modeled if matching control
samples are sequenced deeply enough. However, among the
four recently published ChIP-Seq studies [5-8], one did not
have a control sample [5] and only one of the three with con-
trol samples systematically used them to guide peak finding
[8]. That method requires peaks to contain significantly
enriched tags in the ChIP sample relative to the control,
although a small ChIP peak region often contains too few con-
trol tags to robustly estimate the background biases.

Here, we present Model-based Analysis of ChIP-Seq data,
MACS, which addresses these issues and gives robust and
high resolution ChIP-Seq peak predictions. We conducted
ChIP-Seq of FoxA1 (hepatocyte nuclear factor 3α) in MCF7
cells for comparison with FoxA1 ChIP-chip [1] and identifica-
tion of features unique to each platform. When applied to
three human ChIP-Seq datasets to identify binding sites of
FoxA1 in MCF7 cells, NRSF (neuron-restrictive silencer fac-
tor) in Jurkat T cells [8], and CTCF (CCCTC-binding factor) in
CD4+ T cells [5] (summarized in Table S1 in Additional data
file 1), MACS gives results superior to those produced by
other published ChIP-Seq peak finding algorithms [8,11,12].

Results
Modeling the shift size of ChIP-Seq tags
ChIP-Seq tags represent the ends of fragments in a ChIP-
DNA library and are often shifted towards the 3' direction to
better represent the precise protein-DNA interaction site. The
size of the shift is, however, often unknown to the experi-
menter. Since ChIP-DNA fragments are equally likely to be
sequenced from both ends, the tag density around a true
binding site should show a bimodal enrichment pattern, with
Watson strand tags enriched upstream of binding and Crick
strand tags enriched downstream. MACS takes advantage of
this bimodal pattern to empirically model the shifting size to
better locate the precise binding sites.

Given a sonication size (bandwidth) and a high-confidence
fold-enrichment (mfold), MACS slides 2bandwidth windows
across the genome to find regions with tags more than mfold
enriched relative to a random tag genome distribution. MACS
randomly samples 1,000 of these high-quality peaks, sepa-
rates their Watson and Crick tags, and aligns them by the
midpoint between their Watson and Crick tag centers (Figure
1a) if the Watson tag center is to the left of the Crick tag
center. The distance between the modes of the Watson and
Crick peaks in the alignment is defined as 'd', and MACS shifts
all the tags by d/2 toward the 3' ends to the most likely pro-
tein-DNA interaction sites.

When applied to FoxA1 ChIP-Seq, which was sequenced with
3.9 million uniquely mapped tags, MACS estimates the d to be

only 126 bp (Figure 1a; suggesting a tag shift size of 63 bp),
despite a sonication size (bandwidth) of around 500 bp and
Solexa size-selection of around 200 bp. Since the FKHR motif
sequence dictates the precise FoxA1 binding location, the true
distribution of d could be estimated by aligning the tags by the
FKHR motif (122 bp; Figure 1b), which gives a similar result
to the MACS model. When applied to NRSF and CTCF ChIP-
Seq, MACS also estimates a reasonable d solely from the tag
distribution: for NRSF ChIP-Seq the MACS model estimated
d as 96 bp compared to the motif estimate of 70 bp; applied to
CTCF ChIP-Seq data the MACS model estimated a d of 76 bp
compared to the motif estimate of 62 bp.

Peak detection
For experiments with a control, MACS linearly scales the total
control tag count to be the same as the total ChIP tag count.
Sometimes the same tag can be sequenced repeatedly, more
times than expected from a random genome-wide tag distri-
bution. Such tags might arise from biases during ChIP-DNA
amplification and sequencing library preparation, and are
likely to add noise to the final peak calls. Therefore, MACS
removes duplicate tags in excess of what is warranted by the
sequencing depth (binomial distribution p-value <10-5). For
example, for the 3.9 million FoxA1 ChIP-Seq tags, MACS
allows each genomic position to contain no more than one tag
and removes all the redundancies.

With the current genome coverage of most ChIP-Seq experi-
ments, tag distribution along the genome could be modeled
by a Poisson distribution [7]. The advantage of this model is
that one parameter, λBG, can capture both the mean and the
variance of the distribution. After MACS shifts every tag by d/
2, it slides 2d windows across the genome to find candidate
peaks with a significant tag enrichment (Poisson distribution
p-value based on λBG, default 10-5). Overlapping enriched
peaks are merged, and each tag position is extended d bases
from its center. The location with the highest fragment
pileup, hereafter referred to as the summit, is predicted as the
precise binding location.

In the control samples, we often observe tag distributions
with local fluctuations and biases. For example, at the FoxA1
candidate peak locations, tag counts are well correlated
between ChIP and control samples (Figure 1c,d). Many possi-
ble sources for these biases include local chromatin structure,
DNA amplification and sequencing bias, and genome copy
number variation. Therefore, instead of using a uniform λBG
estimated from the whole genome, MACS uses a dynamic
parameter, λlocal, defined for each candidate peak as:

λlocal = max(λBG, [λ1k,] λ5k, λ10k)

where λ1k, λ5k and λ10k are λ estimated from the 1 kb, 5 kb or
10 kb window centered at the peak location in the control
sample, or the ChIP-Seq sample when a control sample is not
available (in which case λ1k is not used). λlocal captures the



Using	  MACS	  is	  easy	  

•  hfp://liulab.dfci.harvard.edu/MACS/index.html	  
•  Wrifen	  in	  Python,	  runs	  in	  command	  line.	  	  
•  Command:	  
!macs14 -t sample.bed -c control.bed -n result!

•  A	  problem:	  doesn’t	  consider	  replicates.	  Data	  from	  
replicated	  samples	  need	  to	  be	  merged.	  	  

!



Cisgenome	  (Ji	  et	  al.	  2008,	  NBT)	  

•  Implemented	  with	  Windows	  GUI.	  	  
•  Use	  a	  Binomial	  model	  to	  score	  peaks.	  

ni	  =k1i	  +	  k2i	  
k1i	  |	  ni	  ~	  Binom(ni	  ,	  p0)	  

k1i	  

k2i	  



Consider	  mappability:	  PeakSeq	  
Rozowsky	  et	  al.	  (2009)	  NBT	  

•  First	  round	  analysis:	  detect	  possible	  peak	  regions	  by	  
iden=fying	  threshold	  considering	  mappability:	  
–  Cut	  genome	  into	  segment	  (L=1Mb).	  Within	  each	  segment,	  	  the	  same	  

number	  of	  reads	  are	  permuted	  in	  a	  region	  of	  f	  ×	  Length,	  where	  f	  is	  the	  
propor=on	  of	  mappable	  bases	  in	  the	  segment.	  

background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf—a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).
In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals

for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression

1. Constructing signal maps 

Tags

Signal map

• Simulate each segment
• Determine a threshold 
satisfying the desired initial 
false discovery rate
• Use the threshold to 
identify potential target sites

2. First pass: determining potential binding regions by comparison to simulation

f
Mappability map 
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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•  Second	  round	  analysis:	  
–  Normalize	  data	  by	  counts	  in	  background	  regions.	  
–  Test	  significance	  of	  the	  peaks	  iden=fied	  in	  first	  round	  by	  comparing	  

the	  total	  count	  in	  peak	  region	  with	  control	  data,	  using	  binomial	  p-‐
value,	  with	  Benjamini-‐Hochberg	  correc=on.	  

background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf—a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).
In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals

for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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Comparing	  peak	  calling	  algorithms	  	  

peak ranking accuracy, we calculated the rate of canonical motif
occurrence for NRSF, GABP and FoxA1 within additive intervals
of 50 peaks (top 50, top 100, top 150, etc; Figure 6 and Figures S1,
S2). The percentage of peaks containing high confidence motifs
decays with decreasing peak rank, suggesting that rank generally
discriminates well between high confidence and lower confidence
peaks. The performance of the different ChIP-seq methods at
detecting high confidence NRSF binding sites is very similar; the
percentage of motif-containing peaks varied by less than 3% with
the exception of PeakSeq and HPeak. More variability is seen in
the ranking of the top 50 peaks, though the methods still differ by
only 10% when the outliers (PeakSeq and HPeak) are excluded.
Over the first 2000 peaks, PeakSeq and HPeak detect between 10
and 20% fewer peaks with strong motifs than other algorithms.
However, when a larger window (1 kb) surrounding the peak
center is examined, the performance of these methods is
comparable to other programs (Figure S3). This result suggests
that both PeakSeq and HPeak identify peaks with lower positional
resolution than other methods for the NRSF dataset. The decay of
motif content in ranked peaks for the other two datasets were
similarly tightly clustered, showing relatively little variation with
the exception of slightly poorer performance for Sole-Search in the
GABP dataset and QuEST in the FoxA1 dataset (Figure S1 and
S2, respectively). While changes in the significance threshold set
for defining a motif occurrence impacted absolute percentage of
peaks containing motifs, such changes did not alter the
performance of the programs relative to one another (Figure
S5). Another interesting point with regards to peak ranking is that
the different statistics provided by the same program can produce
substantially different rankings, with variable success at determin-
ing high-quality peaks (Figure S4).

This peak ranking analysis provides considerably more practical
information to the user than does the motif analysis conducted by
Laajala et al. [12], which simply reports the average significance of
motif overlap with all peaks. Our results support their general
conclusion that the whole peak lists from all programs show
significant proportion of the canonical binding motif and also
demonstrate the significance of peak rank in recovering high
confidence motif sites.
We note that the absence of a strong motif occurrence does not

definitively classify peaks as false positives, as some such peaks
could represent true binding sites with weak or non-canonical
binding motifs. Nonetheless, high confidence motif occurrences
within peaks are a good indicator of an actual binding event and
can be used to assess how well peak ranking identifies the most
confident binding sites. Furthermore, previous studies of non-
canonical motifs suggest that these sites makes up a relatively
minor fraction of overall motif occurrences [16].
Given the vagaries of ChIP enrichments, it is important to

consider the robustness specificity in peak calling with ‘‘noisy’’
data. Less efficient ChIP enrichments will produce datasets with a
larger ratio of non-specific background sequence to ChIP-targeted
sequence. Such datasets will thus be characterized by higher
background noise, lower peaks and under-sampling of low-
intensity peaks. The complexity of features in the background
sequence (discussed in Introduction) makes modeling ‘‘noise’’
features extremely challenging. We have simulated noisy datasets
in silico by removing randomly sampled ChIP reads from Johnson
et al. ’s NRSF dataset and introducing an equal number of reads
from the background data. Datasets were simulated where the
noisy ChIP sample was composed 10%, 30% and 50% reads
sampled from the background control dataset. These increasingly
noisy datasets are meant to simulate decreasing efficiency ChIP
enrichments with the same sequencing coverage.
As expected, the number of peaks called decreases in

simulations of less efficient ChIP (Figure S6). The size of the
decrease tended to be most marked for programs that called larger
peak lists, suggesting that it was the smaller peaks were lost in the
noise. This conclusion was borne out in by searching for canonical
motifs in the ranked peak lists from our simulated noisy data. Few
differences were observed between variable noise datasets in the
motif content of ranked peaks (Figure S7), indicating that though
all programs lost some peaks in the noise, they tended not to
increase spurious peak calls. QuEST showed the most notable
decay of motif content in noisier datasets, likely because this
algorithm’s background filtering method relies on larger control
datasets. In noisier simulations, HPeak and PeakSeq showed
increasing motif content in the top 500 peaks, such that it seems
that their ranking algorithms performed better on noisier datasets.
Further investigation is needed to discover the origin of this
phenomenon, though we suspect that this may be due to better
spatial precision in their identifications. In summary, however, we
find few substantial differences between the performance of these
programs on our simulated datasets at increasing noise thresholds.

Spatial resolution. In addition to discriminating the true
binding sites, a ChIP-seq peak finder should identify that binding
site with some degree of precision to facilitate the location of
DNA-protein binding. The width of identified peaks can be an
important consideration for de novo motif searches of peaks
identified by ChIP-seq, since extraneous sequence around the
true protein binding adds significant noise that can obscure the
motif signal. Most programs will report a peak region of variable
width, given by start and stop coordinates. However,
directionality-scoring methods tend to report either narrow fixed
width peaks (SISSRS) or single coordinate peaks (spp package),

Figure 3. Quantity of peaks identified. Programs report different
numbers of peaks, when run with their default or recommended
settings on the same dataset. Number of reported peaks is shown for
the GABP (green bars), FoxA1 (red bars) and NRSF (blue bars) datasets.
To assess how different these peak lists were, those peaks identified by
all 11 methods were calculated (core peaks).
doi:10.1371/journal.pone.0011471.g003
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rather than the wider regions reported by other methods. For both
the FoxA1 and NRSF datasets, the median peak width was
between 250 and 400 bp for all methods reporting peak width
ranges, with the exception of CisGenome which had smaller
median peak width (72 bp for NRSF and 90 bp for GABP; Figure
S8 and S9). In contrast, peaks called from the GABP dataset
tended to be wider, with median peak widths ranging from 300 to
800 bp, excepting CisGenome which was only 90 bp (Figure S10).
This observed variance between datasets emerges either from
actual differences in transcription factor binding (GABP binding in
a more distributed manner), from variation in the preparation of
samples (such as differences in antibody specificity or size selection
during the preparation of the sequencing library) or a combination
of such factors.
In general, programs also provide an estimate of the exact

binding position, given as a single coordinate calculated either as
the highest point of tag coverage in the peak or by some other

scoring metric. This coordinate is meant to aid the researcher in
honing in on section of DNA originally cross-linked by the target
protein during the ChIP-enrichment step. Though there is no
single nucleotide at which cross-linking occurs, this estimate is
meant to facilitate the precise discovery of cis-regulatory elements
[11]. To assess the positional accuracy of these estimates made by
different programs, the distance was calculated between each
predicted binding coordinate and the centers of high confidence
binding motifs within 250 bp (Figure 7, Table S3). Binding
positions were estimated as the center of the reported peak region,
if the program did not provide a predicted binding coordinate
(HPeak, PeakSeq and Sole-Search; starred in Figure 7). Unsur-
prisingly, all three datasets revealed that these centered estimates
provided much less positional resolution than the precise
predictions of binding positions by other programs.
For all programs, the positional accuracy was lower for the

GABP dataset (Figure 7C) than for either FoxA1 or NRSF.

Figure 5. Sensitivity assessment. The percentage of qPCR verified positives that were detected by different programs is shown as a function of
the increasing number of ranked peaks examined for the (A) NRSF dataset and its 83 qPCR-verified sites, or (C) the GABP dataset and its 150 qPCR-
verified GABP binding sites. qPCR sites were classified as ‘‘found’’ if the center of the sites occurred within 250 bp of a program’s predicted binding
site (peak summit or peak region center). (B) Coverage of high confidence (FIMO p,161027) NRSE2 motifs or (D) high confidence (FIMO p,161026)
GABP motifs throughout the human genome as a function of increasing ranked peaks examined. Motif occurrences were covered if the center of the
motif occurred within 250 bp of a program’s predicted binding site (peak summit or center of peak region).
doi:10.1371/journal.pone.0011471.g005
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Another	  class	  of	  approach:	  	  
modeling	  the	  read	  loca)ons	  

•  Regions	  with	  more	  reads	  clustered	  tend	  to	  be	  
binding	  sites.	  	  

•  This	  is	  similar	  to	  using	  binned	  read	  counts.	  
•  Reads	  mapped	  to	  forward/reverse	  strands	  are	  
considered	  separately.	  

•  Peak	  shape	  can	  be	  incorporated.	  	  



PICS:	  Probabilis)c	  Inference	  for	  ChIP-‐seq	  
Zhang	  et	  al.	  2010	  Biometrics	  

•  Use	  shiKed	  t-‐distribu=ons	  to	  model	  peak	  shape.	  	  
•  Can	  deal	  with	  the	  clustering	  of	  mul=ple	  peaks	  in	  a	  
small	  region.	  	  

•  A	  two	  step	  approach:	  
–  Roughly	  locate	  the	  candidate	  regions.	  
–  Fit	  the	  model	  at	  each	  candidate	  region	  and	  assign	  a	  score.	  

•  EM	  algorithm	  for	  es=ma=ng	  parameters.	  
•  Computa=onally	  very	  intensive.	  
•  R/Bioconductor	  package	  available.	  	  
	  



  














































                                                                                                                                                                                                                                                                                                        

                                                                                                                                                                                                                                                                                    

  

  





  

  





     






























                                                            

                             

  

  









 

 

Figure 1: Binding events in two candidate regions in GABP data. PICS detected one binding
event in the region in (a) and two binding events in the region in (b). Forward and reverse
strand aligned reads are shown by red and green arrowheads, respectively. Mappability pro-
files are shown as black/white lines, in which the white intervals show nonmappable regions.
In (a) the distribution of reverse reads has been biased by a region with low mappability.

where µfk = µk − δk/2 and µrk = µk + δk/2 and µk, δk, σfk, σrk are defined as in (1), but

have an index k that corresponds to the binding event k, while wk is the mixture weight

of component k, which represents the relative proportion of reads coming from the binding

event k. For simplicity we denote by gf and gr the resulting p.d.f. of the forward and reverse

mixture distributions.

Figure 1b displays a candidate region that has two binding events, along with the corre-

sponding PICS parameter estimates.

As described in (1-2), PICS uses t distributions with 4 degrees of freedom to model local

distributions of forward and reverse reads. While the t distribution is similar in shape to the

Gaussian distribution, its heavier tails make it a robust alternative (Lange et al., 1989). The

degrees of freedom are fixed as v = 4 to minimize computation (Lo et al., 2008). Note also

that since a DNA fragment should contribute a forward read or a reverse read with equal

probability, we use the same mixture weight wk for both forward and reverse distributions.

Finally, to accomodate possible biases (e.g. in DNA sonication) that result in asymmetric

forward and reverse peaks, we use different forward and reverse variance parameters σ2
fk and

σ2
rk.

6

s = 10 bp for computational convenience. We tested other values for w and s and obtained

essentially the same candidate regions.

3 Model, priors and parameter estimation

In this section, we use IGa(α, β) to denote an inverse gamma distribution, and Ga(α, β)

to denote a gamma distribution with shape parameter α and an inverse scale parameter

β. Similarly, N(µ, σ2) denotes a Normal distribution with mean µ and variance σ2, while

t4(µ, σ2) denotes a t distribution with 4 degrees of freedom, mean µ and variance parameter

σ2.

3.1 Modeling a single binding event

Having segmented the read data into candidate regions, as described in section 2, we now

assume that each region contains a single transcription factor binding site. An extension to

the case of multiple binding sites is treated below. Let us denote by fi and rj the i − th

and j − th forward and reverse reads in a given region, with i = 1, . . . , nf and j = 1, . . . , nr.

Note that the number of forward reads, nf , and reverse reads, nr, will typically vary between

candidate regions. We jointly model the forward and reverse reads as:

fi ∼ t4
(

µ − δ/2, σ2

f

)

and rj ∼ t4
(

µ + δ/2, σ2

r

)

(1)

where µ represents the binding site position, δ is the distance between the maxima of the

forward and reverse distributions, which corresponds to the average DNA fragment size of

the binding event in question, and σf and σr measure the corresponding variability in DNA

fragment lengths. Note that this approach differs from that typical for sequencing data, in

that we do not model the sequence counts, but rather the distributions of the fragment ends,

for which we have more prior information. Figure 1a displays a candidate region with one

binding event, along with the corresponding PICS parameter estimates.

3.2 Modeling multiple binding events

We use mixture models to address the possibility that the sets of forward and reverse reads

in single candidate region were generated by multiple closely-spaced binding events. We

model the forward and reverse reads using t-mixture distributions:

fi ∼
K

∑

k=1

wkt4
(

µfk, σ
2

fk

) d
=gf(fi|w, µ, δ, σf)

rj ∼
K

∑

k=1

wkt4
(

µrk, σ
2

rk

) d
=gr(rj |w, µ, δ, σr) (2)
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GPS	  (Genome	  Posi)oning	  System)	  	  
Guo	  et	  al.	  2010,	  Bioinforma=cs	  

•  Part	  of	  GEM	  (Genome	  wide	  Event	  finding	  and	  Mo=f	  
discovery)	  soKware	  suite.	  

•  The	  general	  idea	  is	  very	  similar	  to	  PICS.	  
•  Use	  non-‐parametric	  distribu=on	  to	  model	  the	  peak	  shape.	  	  
•  Es=ma=on	  of	  peak	  shape	  and	  peak	  detec=on	  are	  iterated	  

un=l	  convergence.	  
•  Wrifen	  in	  Java,	  runs	  in	  command	  line.	  



Use	  GPS	  

•  Run	  following	  command:	  	  
java -Xmx1G -jar gps.jar --g mm8.info --d 
Read_Distribution_default.txt --expt IP.bed 
--ctrl control.bed --f BED --out result!

!

•  It’s	  much	  slower	  than	  MACS	  or	  CisGenome.	  	  !



A	  li`le	  more	  comparison	  

•  I	  found	  that	  using	  peak	  shapes	  helps.	  GPS	  tend	  to	  
perform	  befer.	  PICS	  seems	  not	  stable.	  	  
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ChIP-‐seq	  for	  histone	  modifica)on	  

•  Histone	  modifica=ons	  have	  various	  paferns.	  
– Some	  are	  similar	  to	  protein	  binding	  data,	  e.g.,	  
with	  tall,	  sharp	  peaks:	  H3K4.	  

– Some	  have	  wide	  (mega-‐bp)	  “blocks”:	  H3k9.	  	  
– Some	  are	  variable,	  with	  both	  peaks	  and	  blocks:	  
H3k27me3,	  H3k36me3.	  



Histone	  modifica)on	  ChIP-‐seq	  data	  



Peak/block	  calling	  from	  histone	  ChIP-‐seq	  

•  Use	  the	  soKware	  developed	  for	  TF	  data:	  
– Works	  fine	  for	  some	  data	  (K4,	  K27,	  K36).	  
–  Not	  ideal	  for	  K9:	  it	  tends	  to	  separate	  a	  long	  block	  into	  
smaller	  pieces.	  

•  Exis=ng	  methods	  based	  on:	  smoothing,	  HMM,	  
wavelet,	  etc.	  	  

•  Method	  for	  detec=ng	  blocks	  is	  rela=vely	  under-‐
developed	  and	  under-‐tested:	  
–  ENCODE	  is	  evalua=ng	  exis=ng	  methods.	  	  



Complica)ons	  in	  histone	  peak/block	  calling	  

•  Smoothing-‐based	  method:	  	  
–  Long	  block	  requires	  bigger	  smoothing	  span,	  which	  hurts	  
boundary	  detec=on.	  	  

–  Data	  with	  mixed	  peak/block	  (K27me3,	  K36me3)	  requires	  
varied	  span:	  adap=ve	  firng	  is	  computa=onally	  infeasible.	  

•  HMM	  based	  method:	  	  	  
–  Tend	  to	  over	  fit.	  Some=mes	  need	  to	  manually	  specify	  
transi=on	  matrix.	  	  



Available	  methods/soPware	  for	  	  
histone	  data	  peak	  calling	  	  

•  MACS2	  	  
•  BCP	  (Bayesian	  change	  point	  caller)	  	  
•  SICER	  	  
•  RSEG	  	  
•  UW	  Hotspot	  	  
•  BroadPeak	  	  
•  mosaicsHMM	  	  
•  WaveSeq	  	  
•  ZINBA	  	  
•  …	  



Summary	  for	  ChIP-‐seq	  peak/block	  calling	  	  

•  Detect	  regions	  with	  reads	  enriched.	  	  
•  Control	  sample	  is	  important.	  	  
•  Incorporate	  some	  special	  characteris=cs	  of	  the	  data	  
improves	  results.	  	  

•  Calling	  blocks	  (long	  peaks)	  is	  harder.	  	  
•  Many	  soKware	  available.	  	  



Downstream	  analysis	  aPer	  	  
peak/block	  calling	  



APer	  peak/block	  calling	  

•  Compare	  results	  among	  different	  samples:	  
–  Presence/absence	  of	  peaks.	  
–  Differen=al	  binding.	  
–  Look	  for	  Combinatory	  paferns.	  	  

•  Compare	  results	  with	  other	  type	  of	  data:	  
–  Correlate	  TF	  binding	  with	  gene	  expressions	  from	  RNA-‐seq	  
or	  DNA	  methyla=on	  from	  BS-‐seq.	  	  



Comparison	  of	  mul)ple	  ChIP-‐seq	  

•  It’s	  important	  to	  understand	  the	  co-‐occurrence	  paferns	  of	  
different	  TF	  bindings	  and/or	  histone	  modifica=ons.	  	  

•  Post	  hoc	  methods:	  look	  at	  overlaps	  of	  peaks	  and	  represent	  by	  
Venn	  Diagram.	  	  
–  This	  can	  be	  done	  using	  different	  tools:	  BEDtools,	  Bioconductor,	  etc.	  
–  We	  will	  prac=ce	  in	  the	  lab.	  	  	  

Figure 4. Multiple Transcription Factor-Binding Loci Associated with Nanog, Oct4, Sox2, Smad1, and STAT3 as ES-Cell Enhanceosomes
(A) Co-occurrence of transcription factor (TF) groups within MTL. Colors in the heat map reflect the colocalization frequency of each pair of TFs in MTL (yellow

means more frequently colocalized, red means less). TFs have been clustered along both axes based on the similarity in their colocalization with other factors.

(B) Dissection of the TF makeup within MTL. Two major clusters exist within the 3583 MTL. The first group (orange sector) consists of Oct4, Nanog, or Sox2, but

not n-Myc and c-Myc. The second group (light-blue sector) consists of n-Myc or c-Myc, but not Oct4, Nanog, and Sox2. The purple sector is a mixture of the first

two groups (orange and light-blue sectors).

1112 Cell 133, 1106–1117, June 13, 2008 ª2008 Elsevier Inc.



Differen)al	  binding	  (DB)	  analysis	  

•  Problems	  for	  the	  overlapping	  analysis	  are:	  	  
–  Completely	  ignores	  the	  quan=ta=ve	  differences	  of	  peaks.	  	  
–  Highly	  dependent	  on	  the	  thresholds	  for	  defining	  peaks.	  	  

•  More	  desirable:	  quan=ta=ve	  comparison	  to	  detect	  differen=al	  
protein	  binding	  or	  histone	  modifica=on	  (referred	  to	  as	  “DB	  
analysis”).	  	  

•  Typical	  DB	  analysis	  procedure:	  	  
–  Call	  peaks	  from	  individual	  dataset.	  
–  Union	  the	  called	  peaks	  to	  form	  candidate	  regions.	  
–  Hypothesis	  tes=ng	  for	  each	  candidate	  region.	  



Complica)ons	  in	  DB	  analysis	  

•  Different	  backgrounds:	  for	  example,	  chroma=n	  
structures	  affect	  the	  sequencing	  efficiency.	  	  

•  Signal	  to	  noise	  ra=os	  (SNR)	  from	  different	  
experiments:	  
–  Biological:	  sample	  with	  less	  peak	  will	  have	  taller	  peaks.	  	  
–  Technical:	  quali=es	  of	  the	  experiments	  are	  different.	  	  

•  To	  summarize:	  
–  DB	  is	  more	  complicated	  than	  RNA-‐seq	  DE	  problem.	  
– Methods	  are	  rela=vely	  under-‐developed.	  	  



Exis)ng	  methods	  for	  DB	  analysis	  

•  Normalize	  data	  first,	  then	  compare:	  
–  MAnorm	  (Shao	  et	  al.	  2012,	  Genome	  Biology):	  normaliza=on	  based	  on	  MA	  

plot	  of	  counts	  from	  two	  condi=ons,	  then	  use	  normalized	  “M”	  values	  to	  
rank	  differen=al	  peaks.	  	  

–  ChIPnorm	  (Nair	  et	  al.	  2012,	  PLoS	  One):	  quan=le	  normaliza=on	  for	  each	  
dataset,	  then	  define	  differen=al	  peak	  based	  on	  normalized	  IP	  differences.	  

•  Based	  on	  RNA-‐seq	  DE	  methods:	  	  
–  DBChIP:	  Liang	  et	  al.	  (2012)	  Bioinforma=cs.	  	  
–  DiffBind:	  A	  Bioconductor	  package.	  	  

•  Model	  the	  differences	  of	  data	  from	  two	  IP	  sample:	  
–  DIME	  (Taslim	  et	  al.	  2009,	  2011,	  Bioinforma@cs):	  finite	  mixture	  model	  on	  

differences	  of	  normalized	  IP	  counts.	  
–  ChIPDiff	  (Xu	  et	  al.	  2008,	  Bioinforma=cs):	  HMM	  on	  differences	  of	  

normalized	  IP	  counts	  between	  two	  groups.	  	  



Review	  
•  NGS	  provides	  cost-‐effec=ve	  ways	  for	  various	  aspects	  of	  

genomic	  research.	  	  
•  ChIP-‐seq	  is	  a	  type	  of	  NGS	  for	  genome-‐wide	  regional	  analysis:	  

detect	  protein	  binding	  or	  histone	  modifica=on	  regions.	  	  
•  Main	  goal	  of	  ChIP-‐seq	  data	  analysis	  is	  “peak/block”	  calling.	  	  

–  Many	  soKware	  available,	  based	  on	  smoothing	  or	  HMM.	  	  
–  Block	  calling	  is	  harder.	  

•  Comparison	  of	  ChIP-‐seq	  signals	  (differen=al	  binding	  analysis)	  
is	  s=ll	  an	  open	  problem.	  	  


